FFmpeg源码分析:音频滤镜介绍(上)

at 8个月前  ca FFmpeg  pv 430  by touch  

FFmpeg在libavfilter模块提供音视频滤镜。所有的音频滤镜都注册在libavfilter/allfilters.c。我们也可以使用ffmpeg -filters命令行来查看当前支持的所有滤镜,前面-a代表音频。

本篇文章主要介绍音频滤镜,包括:压缩器、淡入淡出、移除噪声、延时、回声、噪声门。


关于音频滤镜的详细介绍,可查看官方文档:音频滤镜。


1、acompressor

压缩器,主要用于减小信号的动态范围。尤其是现代音乐,大多数以高压缩比,提高整体响度。压缩原理是通过检测信号超过所设定阈值,将其除以比例因子。参数选项如下:


level_in:输入增益,默认为1,范围[0.015625, 64]

mode:压缩模式,有 upward和downward两种模式, 默认为downward

threshold:如果媒体流信号达到此阈值,会引起增益减少。默认为0.125,范围[0.00097563, 1]

ratio:信号压缩的比例因子,默认为2,范围[1, 20]

attack:信号提升到阈值所用的毫秒数,默认为20,范围[0.01, 2000]

release:信号降低到阈值所用的毫秒数,默认为250,范围[0.01, 9000]

makeup:在处理后,多少信号被放大. 默认为1,范围[1, 64]

knee:增益降低的阶数,默认为2.82843,范围[1, 8]

link:信号衰减的average和maximum两种模式, 默认为average

detection:采用peak峰值信号或rms均方根信号,默认采用更加平滑的rms

mix:输出时使用多少压缩信号, 默认为1,范围[0, 1]

2、acrossfade

淡入淡出效果,将该效果应用到从一个音频流到另一个音频流的切换过程。参数选项如下:


nb_samples, ns:指定淡入淡出效果的采样数, 默认为44100

duration, d:指定淡入淡出的持续时间

overlap, o:第一个流结束是否与第二个流无缝衔接,默认开启

curve1:设置第一个流淡入淡出的过渡曲线

curve2:设置第二个流淡入淡出的过渡曲线

参考命令如下:


ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:c1=exp:c2=exp output.flac

3、afade

 淡入淡出效果,与acrossfade效果类似。参数列表如下:


type, t:效果类型in或者out,默认为in


start_sample, ss:开始采样数,默认为0


nb_samples, ns:淡入淡出的采样个数,默认为44100


start_time, st:开始时间,默认为0


duration, d:淡入淡出效果持续时长


curve:淡入淡出的过渡曲线,包括以下选项:


tri:三角形,默认为线性斜率

qsin:四分之一正弦波

hsin:二分之一正弦波

esin:指数正弦波

log:对数

ipar:反抛物线

qua:二次插值

cub:三次插值

squ:平方根

cbr:立方根

par:抛物线

exp:指数

iqsin:反四分之一正弦波

ihsin:反二分之一正弦波

dese:双指数

desi:双指数曲线

losi:回归曲线

sinc:正弦基数函数

isinc:反正弦基数函数  

nofade:无淡入淡出

同样地,采用宏定义给不同采样格式设置淡入淡出效果,代码位于af_afade.c,分为FADE_PLANAR(平面存储)和FADE(交错存储)两种形式:


#define FADE_PLANAR(name, type)                                             \
static void fade_samples_## name ##p(uint8_t **dst, uint8_t * const *src,   \
                                     int nb_samples, int channels, int dir, \
                                     int64_t start, int64_t range, int curve) \
{                                                                           \
    int i, c;                                                               \
                                                                            \
    for (i = 0; i < nb_samples; i++) {                                      \
        double gain = fade_gain(curve, start + i * dir, range);             \
        for (c = 0; c < channels; c++) {                                    \
            type *d = (type *)dst[c];                                       \
            const type *s = (type *)src[c];                                 \
                                                                            \
            d[i] = s[i] * gain;                                             \
        }                                                                   \
    }                                                                       \
}
 
#define FADE(name, type)                                                    \
static void fade_samples_## name (uint8_t **dst, uint8_t * const *src,      \
                                  int nb_samples, int channels, int dir,    \
                                  int64_t start, int64_t range, int curve)  \
{                                                                           \
    type *d = (type *)dst[0];                                               \
    const type *s = (type *)src[0];                                         \
    int i, c, k = 0;                                                        \
                                                                            \
    for (i = 0; i < nb_samples; i++) {                                      \
        double gain = fade_gain(curve, start + i * dir, range);             \
        for (c = 0; c < channels; c++, k++)                                 \
            d[k] = s[k] * gain;                                             \
    }                                                                       \
}

4、adeclick

从输入信号移除脉冲噪声。使用自回归模型将检测为脉冲噪声的样本替换为插值样本。参数选项如下:


window, w:设置窗函数大小,单位为ms。默认为55,范围[10, 100]

overlap, o:设置窗体重叠比例,默认为75,范围[50, 95]

arorder, a:设置自回归阶数,默认2,范围[0, 25]

threshold, t:设置阈值,默认为2,范围[1, 100]

burst, b:设置聚变系数,默认为2,范围[0, 10]

method, m:设置重叠方法,可以为add, a或save, s

5、adelay

延迟效果,声道的延迟采样使用静音填充。代码位于libavfilter/af_adelay.c,采用宏定义把对应采样格式填充为静音。如果是u8类型填充为0x80,其他类型填充为0x00,核心代码如下:


#define DELAY(name, type, fill)                                           \
static void delay_channel_## name ##p(ChanDelay *d, int nb_samples,       \
                                      const uint8_t *ssrc, uint8_t *ddst) \
{                                                                         \
    const type *src = (type *)ssrc;                                       \
    type *dst = (type *)ddst;                                             \
    type *samples = (type *)d->samples;                                   \
                                                                          \
    while (nb_samples) {                                                  \
        if (d->delay_index < d->delay) {                                  \
            const int len = FFMIN(nb_samples, d->delay - d->delay_index); \
                                                                          \
            memcpy(&samples[d->delay_index], src, len * sizeof(type));    \
            memset(dst, fill, len * sizeof(type));                        \
            d->delay_index += len;                                        \
            src += len;                                                   \
            dst += len;                                                   \
            nb_samples -= len;                                            \
        } else {                                                          \
            *dst = samples[d->index];                                     \
            samples[d->index] = *src;                                     \
            nb_samples--;                                                 \
            d->index++;                                                   \
            src++, dst++;                                                 \
            d->index = d->index >= d->delay ? 0 : d->index;               \
        }                                                                 \
    }                                                                     \
}
 
DELAY(u8,  uint8_t, 0x80)
DELAY(s16, int16_t, 0)
DELAY(s32, int32_t, 0)
DELAY(flt, float,   0)
DELAY(dbl, double,  0)
AG注释

6、aecho

回声效果,添加回声到音频流。回声是反射声音,在山间或房间内会形成自然反射声。数字回声信号可以模拟这种效果,通过调节原始声与反射声的延迟时间与衰减系数。其中原始声又称为干声,反射声称为湿声。参数选项如下:


in_gain:反射声的输入增益,默认为 0.6

out_gain:反射声的输出增益,默认为0.3

delays:每次反射声的延迟间隔,使用'|'分隔,默认为1000,范围为(0, 90000.0]

decays:每次反射声的衰减系数,使用'|'分隔,默认为0,范围为(0, 1.0]

比如,模拟在山间的回声,参考命令如下:


aecho=0.8:0.9:1000:0.3
AG注释

代码位于af_aecho.c,采用宏定义来设置不同采样格式的回声:


#define ECHO(name, type, min, max)                                          \
static void echo_samples_## name ##p(AudioEchoContext *ctx,                 \
                                     uint8_t **delayptrs,                   \
                                     uint8_t * const *src, uint8_t **dst,   \
                                     int nb_samples, int channels)          \
{                                                                           \
    const double out_gain = ctx->out_gain;                                  \
    const double in_gain = ctx->in_gain;                                    \
    const int nb_echoes = ctx->nb_echoes;                                   \
    const int max_samples = ctx->max_samples;                               \
    int i, j, chan, av_uninit(index);                                       \
                                                                            \
    av_assert1(channels > 0); /* would corrupt delay_index */               \
                                                                            \
    for (chan = 0; chan < channels; chan++) {                               \
        const type *s = (type *)src[chan];                                  \
        type *d = (type *)dst[chan];                                        \
        type *dbuf = (type *)delayptrs[chan];                               \
                                                                            \
        index = ctx->delay_index;                                           \
        for (i = 0; i < nb_samples; i++, s++, d++) {                        \
            double out, in;                                                 \
                                                                            \
            in = *s;                                                        \
            out = in * in_gain;                                             \
            for (j = 0; j < nb_echoes; j++) {                               \
                int ix = index + max_samples - ctx->samples[j];             \
                ix = MOD(ix, max_samples);                                  \
                out += dbuf[ix] * ctx->decay[j];                            \
            }                                                               \
            out *= out_gain;                                                \
                                                                            \
            *d = av_clipd(out, min, max);                                   \
            dbuf[index] = in;                                               \
                                                                            \
            index = MOD(index + 1, max_samples);                            \
        }                                                                   \
    }                                                                       \
    ctx->delay_index = index;                                               \
}
 
ECHO(dbl, double,  -1.0,      1.0      )
ECHO(flt, float,   -1.0,      1.0      )
ECHO(s16, int16_t, INT16_MIN, INT16_MAX)
ECHO(s32, int32_t, INT32_MIN, INT32_MAX)

7、agate

噪声门,用于减少低频信号,消除有用信号中的干扰噪声。通过检测低于阈值的信号,将其除以设定的比例因子。参数选项如下:


level_in:输入等级,默认为0,范围[0.015625, 64]

mode:操作模式upward或downward.,默认为downward

range:增益衰减范围,默认为 0.06125,范围[0, 1]

threshold:增益提升的阈值,默认为0.125,范围[0, 1]

ratio:增益衰减的比例因子,默认为2,范围[1, 9000]

attack:信号放大时间,默认为20ms,范围[0.01, 9000]

release:信号衰减时间,默认为250ms.,范围[0.01, 9000]

makeup:信号放大系数,默认为1,范围[1, 64]

detection:探测方式,peak或 rms,默认为 rms

link:衰减方式,average或maximum,默认为average

8、alimiter

限幅器,用于防止输入信号超过设定阈值。使用前向预测避免信号失真,意味着信号处理有一点延迟。参数选项如下:


level_in:输入增益,默认为1

level_out:输出增益,默认为1

limit:限制信号不超过阈值,默认为1

attack:信号放大时间,默认为5ms

release:信号衰减时间,默认为50ms

asc:需要减少增益时,ASC负责减少到平均水平

asc_level:衰减时间等级, 0代表不需要额外时间,1代表需要额外时间

level:自动调整输出信号,默认关闭

限幅器的代码位于af_alimiter.c,核心代码如下:

static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
    ......
    // 循环检测每个sample
    for (n = 0; n < in->nb_samples; n++) {
        double peak = 0;
        
        for (c = 0; c < channels; c++) {
            double sample = src[c] * level_in;
 
            buffer[s->pos + c] = sample;
            peak = FFMAX(peak, fabs(sample));
        }
 
        if (s->auto_release && peak > limit) {
            s->asc += peak;
            s->asc_c++;
        }
 
        if (peak > limit) {
            double patt = FFMIN(limit / peak, 1.);
            double rdelta = get_rdelta(s, release, inlink->sample_rate,
                                       peak, limit, patt, 0);
            double delta = (limit / peak - s->att) / buffer_size * channels;
            int found = 0;
 
            if (delta < s->delta) {
                s->delta = delta;
                nextpos[0] = s->pos;
                nextpos[1] = -1;
                nextdelta[0] = rdelta;
                s->nextlen = 1;
                s->nextiter= 0;
            } else {
                for (i = s->nextiter; i < s->nextiter + s->nextlen; i++) {
                    int j = i % buffer_size;
                    double ppeak, pdelta;
 
                    ppeak = fabs(buffer[nextpos[j]]) > fabs(buffer[nextpos[j] + 1]) ?
                            fabs(buffer[nextpos[j]]) : fabs(buffer[nextpos[j] + 1]);
                    pdelta = (limit / peak - limit / ppeak) / (((buffer_size - nextpos[j] + s->pos) % buffer_size) / channels);
                    if (pdelta < nextdelta[j]) {
                        nextdelta[j] = pdelta;
                        found = 1;
                        break;
                    }
                }
                if (found) {
                    s->nextlen = i - s->nextiter + 1;
                    nextpos[(s->nextiter + s->nextlen) % buffer_size] = s->pos;
                    nextdelta[(s->nextiter + s->nextlen) % buffer_size] = rdelta;
                    nextpos[(s->nextiter + s->nextlen + 1) % buffer_size] = -1;
                    s->nextlen++;
                }
            }
        }
 
        buf = &s->buffer[(s->pos + channels) % buffer_size];
        peak = 0;
        for (c = 0; c < channels; c++) {
            double sample = buf[c];
 
            peak = FFMAX(peak, fabs(sample));
        }
 
        if (s->pos == s->asc_pos && !s->asc_changed)
            s->asc_pos = -1;
 
        if (s->auto_release && s->asc_pos == -1 && peak > limit) {
            s->asc -= peak;
            s->asc_c--;
        }
 
        s->att += s->delta;
 
        for (c = 0; c < channels; c++)
            dst[c] = buf[c] * s->att;
 
        if ((s->pos + channels) % buffer_size == nextpos[s->nextiter]) {
            if (s->auto_release) {
                s->delta = get_rdelta(s, release, inlink->sample_rate,
                                      peak, limit, s->att, 1);
                if (s->nextlen > 1) {
                    int pnextpos = nextpos[(s->nextiter + 1) % buffer_size];
                    double ppeak = fabs(buffer[pnextpos]) > fabs(buffer[pnextpos + 1]) ?
                                                            fabs(buffer[pnextpos]) :
                                                            fabs(buffer[pnextpos + 1]);
                    double pdelta = (limit / ppeak - s->att) /
                                    (((buffer_size + pnextpos -
                                    ((s->pos + channels) % buffer_size)) %
                                    buffer_size) / channels);
                    if (pdelta < s->delta)
                        s->delta = pdelta;
                }
            } else {
                s->delta = nextdelta[s->nextiter];
                s->att = limit / peak;
            }
 
            s->nextlen -= 1;
            nextpos[s->nextiter] = -1;
            s->nextiter = (s->nextiter + 1) % buffer_size;
        }
 
        if (s->att > 1.) {
            s->att = 1.;
            s->delta = 0.;
            s->nextiter = 0;
            s->nextlen = 0;
            nextpos[0] = -1;
        }
 
        if (s->att <= 0.) {
            s->att = 0.0000000000001;
            s->delta = (1.0 - s->att) / (inlink->sample_rate * release);
        }
 
        if (s->att != 1. && (1. - s->att) < 0.0000000000001)
            s->att = 1.;
 
        if (s->delta != 0. && fabs(s->delta) < 0.00000000000001)
            s->delta = 0.;
 
        for (c = 0; c < channels; c++)
            dst[c] = av_clipd(dst[c], -limit, limit) * level * level_out;
 
        s->pos = (s->pos + channels) % buffer_size;
        src += channels;
        dst += channels;
    }
 
    if (in != out)
        av_frame_free(&in);
 
    return ff_filter_frame(outlink, out);
}


版权声明

本文仅代表作者观点,不代表码农殇立场。
本文系作者授权码农殇发表,未经许可,不得转载。

 

扫一扫在手机阅读、分享本文

已有0条评论
您是本站第12299名访客 今日有0篇新文章 当前在线 26 人