docker 运行GPU
at 7个月前 ca NVIDIA pv 391 by touch
本文dockerfile如下
FROM nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04 # 定义变量 ARG PROGRAM # 设置时区环境变量为 Asia/Shanghai ENV TZ=Asia/Shanghai RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo '$TZ' > /etc/timezone ENV DEBIAN_FRONTEND noninteractive # 替换为阿里云软件源 RUN sed -i 's/archive.ubuntu.com/mirrors.aliyun.com/g' /etc/apt/sources.list RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys A4B469963BF863CC RUN apt-get update #安装环境 RUN apt-get install python-dev -y && apt-get install wget -y && apt-get install chrony -y && apt-get install unzip gnupg2 gnupg make gcc g++ curl -y RUN apt-get clean && rm -rf /var/lib/apt/lists/* ##以下内容根据实际业务修改
docker-compose版本为docker-compose version 1.27.4, build 40524192,docker-compose.yaml内容如下
version: '3.9' services: transcode-service: image: transcode-gpu:v1.0.1 runtime: nvidia entrypoint: ["sh", "-c", "/soft/live.sh"] #entrypoint: ["sh", "-c", "/soft/offline.sh"] #entrypoint: ["sh", "-c", "/soft/all.sh"] container_name: transcode-service restart: always privileged: true network_mode: bridge ports: - "2030-2900:2030-2900" - "2000:8000" environment: - TZ=Asia/Shanghai - NVIDIA_VISIBLE_DEVICES=all - NVIDIA_DRIVER_CAPABILITIES=compute,video,utility
运行nvidia-smi命令如下
root@icbt:/soft/transcode_docker# nvidia-smi Wed Apr 24 11:11:29 2024 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.223.02 Driver Version: 470.223.02 CUDA Version: 11.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... Off | 00000000:01:00.0 Off | N/A | | 36% 43C P2 112W / 370W | 418MiB / 10009MiB | 1% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 192088 C ...ranscoder/live/tranc_live 415MiB | +-----------------------------------------------------------------------------+
注:必须安装NVIDIA-docker2安装方法请参照https://www.codefarme.com/?id=276
docker运行gpu参考https://qiita.com/nakasuke_/items/ec1b0636416df3c72db3
宿主机NVIDIA下载驱动链接https://www.nvidia.cn/Download/index.aspx?lang=cn
版权声明
本文仅代表作者观点,不代表码农殇立场。
本文系作者授权码农殇发表,未经许可,不得转载。
已有0条评论